Toutes les vidéos

Le son d'un tourbillon de poussière martien capturé par le microphone de SuperCam sur Persévérance !
Recherche 00:28 min

Le son d’un tourbillon de poussière martien capturé par le microphone de SuperCam sur Persévérance !

00:28 min
Recherche

13 décembre 2022

Le son d’un tourbillon de poussière martien capturé par le microphone de SuperCam sur Persévérance ! NASA

Cette vidéo et cet audio montrent les résultats obtenus par le rover martien Persévérance de la NASA et son microphone SuperCam lors de l’enregistrement des sons d’un tourbillon de poussière martien passé à sa verticale le 27 septembre 2021, le 215e jour martien ou sol, de la mission. Le tourbillon de poussière mesurait 25 mètres de large pour au moins 118 mètres de haut, et se déplaçait à 19 km/h environ.
C’est la première fois qu’un tel enregistrement est réalisé, car capturer un tourbillon de poussière demande un peu de chance. En effet, il a survolé le rover au moment où tous les capteurs de Persévérance mesurant le vent, la pression, la température et la poussière plus la caméra NavigationXXX (Navcam) étaient en marche.
Cela a permis aux scientifiques de combiner les sons, les images et les données atmosphériques. La combinaison unique de ces données, ainsi que la modélisation atmosphérique, ont permis aux chercheurs d’estimer les dimensions du tourbillon de poussière.
Les scientifiques ne peuvent pas prédire précisément le passage de ces vortex. Les rovers comme Persévérance et Curiosity les surveillent régulièrement. Lorsque les scientifiques constatent qu’ils sont plus fréquents à un certain moment de la journée ou qu’ils s’approchent d’une certaine direction, ils concentrent leur surveillance pour tenter d’attraper un tourbillon de poussière avec tous les capteurs à leur disposition.
> Pour mieux comprendre la vidéo, elle montre trois rangées d’images :
- la rangée du haut est une image brute de la surface martienne prise par la NavcamSuperCam ; bien que la caméra soit capable de prendre des couleurs, elle prend des images en noir et blanc lorsqu’elle recherche des tourbillons de poussière afin de réduire la quantité de données renvoyées vers la Terre (la plupart des images reviennent sans tourbillon de poussière détecté).
- la rangée du milieu montre la même image traitée avec un logiciel de détection des changements pour indiquer où le mouvement s’est produit au fil du temps ; la couleur est utilisée pour montrer la densité de la poussière, allant du bleu (bruit à la poussière de faible densité) au jaune en passant par le violet. Les zones où le mouvement est détecté sont indiquées par la couleur, le violet correspondant à un mouvement léger et le blanc à un mouvement plus rapide.
- la dernière ligne est un graphique montrant l’amplitude du son provenant du microphone de SuperCam et une chute soudaine de la pression atmosphérique enregistrée par la suite de capteurs de Perseverance, appelée Mars Environmental Dynamics Analyzer, fournie par le Centro de Astrobiología (CAB) à l’Instituto Nacional de Tecnica Aeroespacial à Madrid et l’amplitude du son provenant du microphone de SuperCam .
Un objectif clé de la mission de Persévérance sur Mars est l’astrobiologie, notamment la recherche de signes de vie microbienne ancienne. Le rover caractérisera la géologie et le climat passé de la planète, ouvrira la voie à l’exploration humaine de la planète rouge et sera la première mission à collecter et à mettre en cache de la roche et du régolithe martiens (roche brisée et poussière).
Découvrez... la soufflerie de visualisation de l'ISAE-SUPAERO !
Entreprises 1:50 min

Découvrez... la soufflerie de visualisation de l’ISAE-SUPAERO !

1:50 min
Entreprises

29 novembre 2022

Découvrez... la soufflerie de visualisation de l’ISAE-SUPAERO ! ISAE-SUPAERO / SapienSapienS

La soufflerie de visualisations est la seule soufflerie à conduit ouvert du département. Contrairement aux souffleries à conduit de retour, dans lesquelles l’air recircule dans le conduit, ici l’air est capté à l’extérieur du bâtiment, circule dans la soufflerie puis est évacué à l’extérieur grâce à un compresseur centrifuge à aspiration placé en sortie de la soufflerie.
Cette soufflerie est ainsi particulièrement adaptée à l’étude des pertubations d’écoulement : les pertubations maitrisées et bien qualifiées générées dans la veine d’essais sont ensuite évacuées sans venir modifier les conditions entrantes dans la soufflerie.
La veine d’essais de la soufflerie mesure 45 cm de côté et 3 m de long. Les vitesses peuvent atteindre 35 m/s. Sans aucune pertubation, la géométrie et traitement du conduit (filtres, nid d’abeilles et grilles fines) garantissent une bonne homogénéité spatiale et temporelle de l’écoulement qui présente un taux de turbulence voisin de 0.3%.
Ici, des volets oscillants sont placés en extrémité de veine d’essai pour générer des variations temporelles quasi-sinusoïdales maîtrisées de la vitesse de l’écoulement. Les pertes de charges associées à la fermeture des volets peuvent assurer une perte violente de plus de 50% de la vitesse longitudinale.
De telles perturbations aérologiques peuvent être enregistrées au cours d’un vol de faible altitude, particulièrement en environnement urbain pour lequel la présence de bâtiments accentue l’intensité des fluctuations du vent apparent. Ainsi, un drone évoluant à une dizaine de m/s est susceptible de rencontrer des rafales de vent de grande extension spatiale et d’amplitude similaire à sa propre vitesse d’avancement. Les propriétés et les effets de la turbulence atmosphérique sur les performances en vol de ces aeronefs légers, de petites tailles et de faible vitesse d’avancement sont donc très différents de ce qui est classiquement connu pour des avions de lignes. L’enjeu est de concevoir des drones, microdrones, nanodrones robustes aux rafales de vent.
Nous étudions actuellement la réponse aérodynamique instationnaire d’une aile soumise à une variation sinusoïdale du vent incident. Les dimensions de l’aile et vitesses étudiées sont représentatives d’un vol de microdrone en environnement urbain.
Les propriétés désirées de la rafale de vent sont assurés par un pilotage adapté des volets oscillants. L’écoulement instationnaire est caractérisé finement à l’aide d’une sonde fil chaud placée en entrée de veine d’essai. La rafale retenue présente une vitesse moyenne de 10m/s avec des variations de +/- 4m/s sur une période de 0.8 s.
Nous mesurons les performances globales aérodynamiques en relevant les évolutions temporelles des efforts de portance, traînée et moment de tangage pour différents angles d’incidence de vol.
Pour analyser l’origine de ces performances, il faut bien qualifier et comprendre la physique de l’écoulement autour de la maquette et sa réponse face aux variations de vitesse incidente. La Vélocimétrie par Images de Particules (PIV), fournit les champs de vitesses instantanés de l’écoulement. Par un post-traitement adapté, nous pouvons en extraire la dynamique de l’écoulement lors des rafales de vent.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 25

Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
Choisir un flux RSS
Tout le flux RSS
Flux RSS par thème
Campus Formations Institut International Ouverture sociale Recherche Entreprises Développement Durable Innovation DEOS Alumni Doctorat DCAS Ingénieur DMSM Mastère Spécialisé DISC LACS Apprentissage Evénement DAEP