Artificial Intelligence almost always implies an underlying optimization process. Getting to know the optimization methods behind modern AI is therefore a crucial asset.

How to find the most intelligent imaging plan for a satellite constellation, or the best dispatching of aircraft around an airport? How to minimize the number of calls to a CSM solver when looking for the perfect aircraft wing design? Why is convergence in Deep Learning such a critical issue?

Prerequisites

- General knowledge on computer science, mathematics, and algorithmics.
- The Python programming language will be used throughout the course, but only a prior basic experience in programming is required.

Learning objectives

After completing this course, participants will be able to:

- Model a decision making problem as an optimization problem;
- Know the main categories of optimization algorithms for AI;
- Choose an appropriate optimization algorithm for a specific problem.

Key elements

Dates: 3 - 6 February 2020
Duration: 28 hours, 4 days
For whom: recent graduates, jobseekers and experienced employees
Location: ISAE-SUPAERO, Toulouse
Course fees: 2 300 €
Language: English

Practical information and registration

Natalia Perthuis - 05 61 33 80 47 – info.exed@isae-supero.fr
Course Content

- Introduction;
 Artificial Intelligence, Machine Learning and Optimization: what? why? how?

- Gradient Descent Optimization: walking downhill;
 Interactive introduction: linear regression, linear separation;
 Overview of gradient based optimization methods;
 Hands-on: Program your own gradient descent;
 Concluding remarks: Why is convergence in Deep Learning such a critical issue?

- Discrete optimization: solving combinatorial problems;
 Overview of discrete satisfaction and optimization methods;
 Interactive session: Branch and Bound applied to MILP and CSP;
 Hands-on: Modelling exercises;
 Challenge: the Orbit Transition Problem;
 Concluding remarks: Scaling issues, opening on metaheuristics;

- Metaheuristics: the compromise between speed and quality;
 Overview: Single-state methods and Population methods;
 Hands-on: Program your own simulated annealing;
 Interactive session: Discovering genetic algorithms;
 Challenge: Aircraft conflict resolution with Genetic Algorithms;
 Concluding remarks: other stochastic methods, CMA-ES, cross-entropy.