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1 Context and Relevancy

In scenarios as natural resource preservation, surveillance, mapping or search and rescue, it is relevant to deploy
efficiently heterogeneous teams of autonomous agents to cover large environments – see Fig. 1a. These teams can
be composed by human and robotic agents with different characteristics and capabilities. For instance, for natural
resource monitoring and preservation, it could be useful to coordinate a heterogeneous team of agents composed
by ground and aerial robots and human beings, to survey areas and to detect–and keep away–undesirable actors.
Another example could be the deployment of collaborative exploration between humans and robots to assess the
damage caused by a natural disaster while searching for survivors. Note that in such missions some environment
properties or parameters could be ill-defined, uncertain, or unknown before mission starts, e.g., the number of
locations of interest to visit, the number of survivors, the locations of hazards or traps, or the number and the
locations of (undesirable) actors.

(a) A heterogeneous team. (b) Conditional plan to check a given location.

Figure 1: Illustrative example of a natural preservation mission employing groups of heterogeneous teams.

Assuming complete knowledge of environment properties and dynamics, which enables setting up a precise
planning problem, it is possible to leverage automated planning tools to coordinate the team actions in order to
achieve mission goals. The resulting plan determines which action should be executed by each agent – see Fig. 1b.
Formally, automated planning can be defined as the automated process of choosing and organizing actions while
anticipating their effects (Ghallab et al., 2025). Automated planning is often used for long- or short-term sequential
decision-making problems, for single- or multi- actors climbing on the category of combinatorial decision-making
problems. Automated planning can be used for deciding which task to assign to each agent, or which sequence of
actions should be executed by the team of agents in view of satisfying goals and/or optimizing one (or multiple)
metric(s).
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Figure 2: Illustrative example of mixed-initiative planning framework building upon automated planning tools and
PGR systems.

Mixed-initiative planning (Cox and Zhang, 2005; Bresina et al., 2005) is a particular planning approach to
design a planning engine system that attempts to collaborate with a human operator to construct planning solutions.
This planning paradigm, allowing the implementation of decision support systems, has gained attention in particular
when the planning problem, if solved only by the human, would require a huge cognitive effort, or if solved only
by the machine, would suffer from lack of human expert knowledge. Examples of mixed-initiative planning can
be cited, as for example, crew-computer collaboration for space mission scheduling (Zheng et al., 2023), manned-
unmanned teaming operations planning (Maier et al., 2024; Schmitt and Schulte, 2015), mixed-initiative systems
for planning and scheduling in industry (Prévôt et al., 2024), or robotic planning and control (Chrpa et al., 2015;
Gianni et al., 2011).

Despite these recent works, literature is still scarce, and several challenges remain, as for instance: How to
account with human preferences regarding parts of the solution plan without treating it as a constraint in the initial
planning problem? How to express plan solutions and to explain the reasoning employed by the planning en-
gine? How to implement initiatives from the planning system, i.e. plan suggestions, that could well fit to human
preferences or eventually push the human to accept a suggestion not necessarily aligned with his initial thoughts?

To push towards flexible mixed-initiative planning systems, a first step would consist on enabling the system
to recognize human intentions, goals, or plan preferences among possible options in some contexts. Interestingly,
Plan, Activity, and Intent Recognition systems (Sukthankar et al., 2014; Singh et al., 2020) employ distinct in-
ference techniques to recognize the goals of agents under observation. Following (Meneguzzi and Pereira, 2021;
Amado et al., 2024), Plan-and Goal Recognition (PGR) are strongly related to automated planning because the
system in charge of the recognition, employs abstract deductive reasoning to infer the actual plan being carried out
by the observed agent, or to infer the most likely desired goal, from a sequence of observations.

In this context, this project aims to build upon automated planning tools and goal/plan recognition systems
towards the design of flexible planning engine capable of collaborating with human operators to iteratively draw up
solutions for uncertain or even ill-defined planning problems.

This original research extends previous work, such as (Sohrabi et al., 2019) that exploited automated planning
and plan recognition to design planning advisors. The mixed-initiative planning application cases we target con-
sists in planning missions where human operators are required to validate, or to take part on planning and on the
execution of the plan – see Fig. 2. For instance we target natural resource monitoring and preservation, or collab-
orative manned-unmanned team operations, where the human operator is in charge of, or eventually accompanied
by, ground or aerial robots capable of autonomous navigation behavior, information acquisition through embedded
sensors or even physical interaction with the environment they evolve.
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2 Research Problem

Automated planning is commonly used for deciding a sequence of actions while anticipating their effects in view
of satisfying goals and/or optimizing one (or multiple) metric(s). It tackles long- or short-term sequential decision-
making problems, for single- or multi- actors. Among the automated planning methods of the literature, Classical
planning is usually based on an goal-satisfying approach, where the states variables describe properties of the
agent(s) and the environment they evolve, and actions describe operations that change the properties of the state.
From an initial state, the planning engine is in charge of finding the sequence of actions (operations) that satisfy
goal requirements. Going behind the classical planning approach, some other planning systems can deal with non-
deterministic action effects and/or partial state observability, such as (Bryce, 2006; Albore et al., 2009; Albore
and Geffner, 2009; Komarnitsky and Shani, 2016; Pereira et al., 2022; Messa and Pereira, 2023). These planning
paradigms and algorithms propose strong foundations for tackling real-life problems where actions can lead to
different outcomes and where some state properties can not be observed (all the time).

For example, let us consider a team illustrated in Figure 1a, composed by a human operator, a ground robot, and
a drone, which is asked to inspect a large area of interest. The drone can fly over the large area, and possibly detect
locations of interest to be further inspected by the team. This fly_over_area action could define the number
of locations of interest where supposed hazards or traps where detected. Then the human agent or the robots can
be assigned to inspect one of the locations of interest to closely observe the supposed trap. In order to execute
an inspection action, the ground agent first needs to move to the position where the supposed trap was localized,
however the trap could not be reachable by this agent. The words possibly detected or could not be reachable
characterize two types of non-deterministic effects of the fly_over_area or move_ugv actions, respectively,
leading to different course of actions. Moreover, detect_trap attests on the presence of partial observability,
because each time a given location is inspected, the information gathered only serves to this location, and does not
inform about the other locations of interest.

Despite the usefulness of automated planning engines for solving complex and combinatorial problems, the
challenge this previous example brings remains not truly addressed in literature where one aims to produce a plan
for an ill-defined and/or uncertain problem, leading to limitations on planning problem definition or to consider a
(too) complex planning problem. Some properties (number of locations of interest to be visited), or actions results
can only be observed at the place. To deal with these challenges, some authors adopted the planning-and-acting
paradigm (Chanel et al., 2019; t’Hooft et al., 2016; Maliah et al., 2022). Where the planning engine produces a first
(partial) plan, then while executing the first action, it supposes its results to (re-)plan towards goal requirements.
This planning-and-acting architecture builds on the so-called online planning paradigm (Ghallab et al., 2025).

From a human perspective, the inputs one may give to the planning engine do not naturally capture some
problems aspects, leading the human user to simplify some parts of the problem, or to make use of tricks to get
around some abstract description limitations. For instance, despite the huge use of the STRIPS-based1 based
description languages, as Planning Domain Description Language (PDDL)2 and variants, to describe planning
domains and associated problems, it is not straightforward to model the effects of a fly_over_area action
regarding that the number of locations of interest is not known in advance.

Moreover, the solutions obtained may not account with human preferences, because they were not developed
for it. As said, planners search to satisfying goals and/or optimize metrics while respecting some constraints.
For instance, taking our example again, the human agent, which is in place with the robots, could prefer (but not
constraint the system) to visit some locations in a given order, what could be cost-inefficient regarding a distance
metric optimized by the planner. Maybe the human operator could be willing to accept some costly solution to
better fit her preferences. As another example, the human, which has experience on the terrain, knows which
locations are more likely to the reachable by the ground robots. But this experience-based knowledge is hard to be
feed into actual planning engines without expressing it as a constraint in precedence of actions, needing the user to

1The Stanford Research Institute Problem Solver (STRIPS) is an automated planner developed by Richard Fikes and Nils Nilsson in
1971.

2see https://fareskalaboud.github.io/LearnPDDL/ for a PDDL introduction
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be an expert on planning tools to express such insights.
Closely to how a human being proceeds to solve complex problems, hierarchical planning is a paradigm of

automated planning approaches in which the planning engine searches a decomposition of complex tasks into
smaller sub-tasks using predefined methods (Ghallab et al., 2025). In particular, Hierarchical Task Networks (HTN)
provide an intuitive methodology for specifying high-level instructions on how robots and agents should perform
tasks, while also giving the planner enough flexibility to choose the lower-level steps and their ordering (Lallement
et al., 2014). However, the hierarchy imposed by the decompositions - a given library of domain control knowledge
- are handwritten, and possibly restricts which sub-tasks can be part of the solution regarding the initial state of the
system, actions, and goals.

Despite that, the decomposition control over the feasible solutions, usually evaluated in a AND/OR tree, makes
hierarchical planning more expressive than the classical goal-satisfying STRIPS-based approaches (Höller, 2023).
Such an expressivity, that hierarchical planning brings, makes it a promising approach in cases where the planning
system collaborates with humans, in particular if the human operator is asked to interact with the planning engine
to achieve desired solutions (Alnazer et al., 2022; Lallement et al., 2014). Regarding Plan-and Goal Recognition
(PGR) and Hierarchical models, previous works have proposed approaches linking recognition systems and plan
tree grammars (Geib and Goldman, 2009). And, only recently (Höller et al., 2018) proposed to combine the
expressive HTN representation with the off-the-shelf planning systems for PGR. Their work was able to handle
large models with many possible goals achieving high recognition rates.

However, classical hierarchical planning does not accounts with non-deterministic actions, i.e., actions for
which the effects can lead to different outcomes, or partial observability regarding the state of the system, i.e,
unknown state variables status or values. Very few studies start to address non-deterministic effects in the HTN
context (Yousefi and Bercher, 2024; Halacheva, 2022), but several challenges still remain relating to planning
domains with cycles, with metrics to be optimized, and in particular accounting with non-deterministic action
affects or partial observability.

Moreover, despite the HTN expressivity advantages from a user point of view, how to feed human preferences
into HTN solvers remains an open question. Let’s take again our example of the human, ground and aerial robots
team which is asked to visit some large area of interest (see Figure 1b). Each check_loc high level action can be
decomposed differently: depending on the chosen agent that does move action, depending if a trap is detect or not.
If a trap is detect, disarm_trap can also be decomposed differently depending on the type of trap and on the
agents needed for that action. In conclusion these actions can have non-deterministic effects and can furnish only
partial knowledge about the true (hole) state. Thus, we believe there is still place for hierarchical-based planning
extensions working with non-deterministic effects and partial observability.

In conclusion, within mixed-initiative planning paradigm, this project aims to investigate approaches that could
be applied, and at least, partially addressing limitations, such as:

L1 Hierarchical planning seems to be a promising approach for mixed-initiative planning. However there is still
place to develop hierarchical planners enabling to stop resolution and delivering a partial plan, or handling
non-deterministic effects and/or partial observability,

L2 Regarding plan and goal recognition systems, former works proposed PRG systems based on hierarchical
planners. Nevertheless, there is still place for coupling PRG and hierarchical planners in the scope of mixed-
initiative planning.

L3 In mixed-initiative planning, there is place to develop flexible planning engines able to account with human
inputs such as possible parts of solution plans, that could be identified through PGR systems, instead of
treating human inputs as a constraint in the initial planning problem;

Building upon these limitations, we expect to lay the foundations towards flexible mixed-initiative planning
systems. Such systems would fit solutions to human preferences, or eventually push the human operator to accept
plan suggestions.
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3 Objectives and Work Methodology

Objective 1 : State-of-the-art reviewing In objective 1, the student will review the literature works, to identify
automated planning tools and plan-and goal recognition systems that could be applicable as it. Note, it could lead
to planning problem simplifications. Additionally, it is expected from this reviewing work to identify promising
mixed-initiative planning frameworks, deeply analyzing recent works such as (Alnazer et al., 2022; Prévôt et al.,
2024; Maier et al., 2024). It would enable to define in which extent we could rely on them to combine automated
planning and PRG systems.

Objective 2 : Plan and goal recognition (PGR) system Following Objective 1, the student will evaluate in Ob-
jective 2 the applicability of the state-of-the-art goal and plan recognition approaches (Singh et al., 2020), probably
based in a simplified model (or non-deterministic or HTN model). The main goal is to a first pipeline based on
PRG allowing to integrate human choices iteratively.

Objective 3 : Partial observable, non-deterministic, hierarchical planning (POND-HP) Following Objective
1, the student will evaluate on-the-shelf automated planning tools, probably based in a simplified planning problem,
using or non-deterministic or HTN approaches in an online planning paradigm. We, expected to identify opportu-
nities for further developments. In particular, we expect to automatize planning problem definition and to exploit
insights from plan compression tools (Pelletier et al., 2025) for improve the solving process.

Objective 4 : Towards mixed-initiative planning systems In Objective 4, we expect the student to start to
combine the approaches studied in Objectives 2 and 3 in order to sketch up a mixed-initiative planning engine.
This activity will necessitate specific research on interaction modalities, visualization tools, and translation or
encoding means to be used by the mixed-initiative planning engine. In this sense, we plan to at least initiate the
software architecture developments during the present project. But we acknowledge that it is not realistic to expect
final implementation results on this activity given the project’s duration.

4 Candidate’s profile

Technical Skills Candidates should showcase scientific aptitude, programming proficiency in languages like java,
C#, Python, or C++, and familiarity with automated planning techniques. However, those keen to learn coding will
also be considered.
Personal Attributes A passion for cutting-edge research, the capability to work independently, adaptability, and
exemplary communication skills are essential.
Laboratory Location DCAS Department
ISAE-SUPAERO (Institut Supérieur de l’Aéronautique et de l’Espace)
10 Av. Marc Pélegrin, 31400 Toulouse
Compensation Interns will receive a stipend of 4.35C net per hour, equating to approximately 609C per month.
Duration Six months, commencing in February or March 2026, with potential opportunities for a subsequent
PhD (financial support already acquired).
Application to be sent to supervisors: Prospective candidates should forward their CV and cover letter to:
Caroline Chanel at caroline.chanel@isae-supaero.fr
Alexandre Albore at alexandre.albore@onera.fr
Baptiste Pelletier at baptiste.pelletier@isae-supaero.fr
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