Research project offer

Location: ISAE SUPAERO, Toulouse, France
Department: Department of Complex Systems Engineering (DISC)
Research group: Decisional Systems
Supervisors: Sophia Salas Cordero, Rob Vingerhoeds and Thibault Gateau
Emails: sophia.salas@isae-supaeoro.fr, rob.vingerhoeds@isae-supaeoro.fr, thibault.gateau@isae-supaeoro.fr

OFFER DESCRIPTION

Title: MBSE approach for Nanosatellites: CREME application
Proposed duration and period: 6 months (TBD, e.g., March-August 2022)

Context

In the earliest stages of a nano-satellite development there are many aspects to take into consideration. A Model-Based Systems Engineering (MBSE) approach can greatly facilitate this phase, amongst others through traceability of requirements, functions, subsystems, components, etc. Trade-off analysis is then used so to select the best possible design. Currently, automatic trade-offs are not possible, due to all the different software that are used to compute each subsystem parameters: STK, IDM-CIC, Python, Matlab, Simulink ... However, a MBSE framework may provide a step forward in providing possibilities to automate such trade-off analysis and avoiding manual data management between computations. A true full-scope MBSE approach for satellite design can constitute a great advantage for traceability throughout the lifecycle of the satellite.
Key-words: MBSE, Preliminary design, Nanosatellite, Mission Analysis.

Objectives and work

Within the framework of this internship, the goal is to work on automating (parts of) the trade-off analyses. The developed approaches will be applied on a real CubeSat currently developed to measure radiation levels in the Van Allen Belts: CREME (Cubesat for Radiation Environment Monitoring Experiment). During the internship, the intern is expected to:

- Provide a systematic approach for nanosatellite design, from needs and desires to verification and validation
- Model different nanosatellite subsystems
- Analyze which trade-offs can be performed between subsystems and develop their automation
- Continue already existing work on database visualization tools (N2 diagram, design graphs, design structure matrixes...)
- Work on a concrete example (based on CREME data).
- If time permits, perform a full system analysis.
REQUIRED APPLICANT PROFILE AND SKILLS

| Study level (tick possible choices) | Undergraduate students (3rd or 4th year)
| Master students (1st or 2nd year)
<table>
<thead>
<tr>
<th>PhD students</th>
</tr>
</thead>
</table>
| Required profile and skills | Basic knowledge on systems engineering and MBSE
| First experience with MBSE tools (e.g. CAMEO, Papyrus, TTool,...)
| Good programming skills (Java, Python, Javascript/Angular would be an advantage)
| Basic satellite design process knowledge. Experience with CubeSats would be a real plus and interest in the space domain is a must! |
| Other useful information | The candidate must be enrolled at a university in order to apply for this internship. Application: if interested, contact us by mail using the subject "[Internship] MBSE approach for NanoSats". |