This course will bring you a unique insight in the modelling of flexible structures and the theory of linear servo-control.

Prerequisites

- Good knowledge of general mechanics, vibration mechanics and linear algebra

Learning objectives

After completing this course, participants will be able to:

- Apply the principles of linear servo-control and flexible structure modeling (aerospace vehicles).
- Analyze the vibratory behavior in open and closed loop on a control law.
- Implement them under MATLAB/SIMULINK.

Key elements

Dates: 9 - 19 November 2021
Duration: 20 hours
For whom: recent graduates, jobseekers and experienced employees
Location: ISAE-SUPAERO, Toulouse
Course fees: 2 000 €
Language: English

Practical information and registration

Natalia Perthuis - 05 61 33 80 47 – info.exed@isae-supraero.fr
Course content

Modelling of flexible structures:
- Lagrange equations,
- notions of effective masses,
- Sub-structuring: connection of a flexible appendix to a central body,
- modal analysis of flexible structures,
- co-location of actuators/sensors,
- model reduction.

Theory of linear servo-control:
- transfer function/state representation,
- modal analysis, root location,
- frequency analysis, stability margins,
- gain/phase control of flexible modes.

Case studies:
- modelling and analysis of an experimental flexible structure: https://personnel.isae-supraero.fr/IMG/mpg/film_bamoss_ve.mpg
- reduction of an aircraft model for the synthesis of lateral flight controls

Teaching methods

<table>
<thead>
<tr>
<th>Teaching methods</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures / tutorial</td>
<td>X</td>
</tr>
<tr>
<td>Collaborative learning</td>
<td></td>
</tr>
<tr>
<td>Flipped classroom</td>
<td></td>
</tr>
<tr>
<td>Blended learning (online and face to face)</td>
<td></td>
</tr>
<tr>
<td>Learning by doing</td>
<td>X</td>
</tr>
<tr>
<td>Project-based</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Case study</td>
<td>X</td>
</tr>
</tbody>
</table>

Assessment

Marked seminar