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1 Introduction

Unmanned Aerial Vehicles (UAVs) can nowadays, in certain conditions, be employed
for different applications ranging from service robotics to surveillance applications in
network monitoring or in search and rescue missions. For this aim, and for widening
the UAV application field, it is mandatory for an UAV to have some capabilities for
autonomous safe navigation in cluttered environments. This navigation capability in-
cludes environment mapping, localization and guidance functionalities relative to the
environment. Especially, one can find intensive research work proposing different UAV
relative localization and guidance solutions based on vision: visual odometry, visual
SLAM (Simultaneous Localization and Mapping), visual servoing, etc. Such solutions
can be embedded in the UAV onboard flight system as an alternative navigation func-
tion to the nominal ones (in most cases, the GPS/INS localization with the waypoint
navigation).

However, the decision of switching the navigation and guidance modes among those
available onboard in function of the environment has not been studied much by the
scientific community. In this context, the objective of this thesis is to develop an online
planning approach to decide on the navigation and the guidance strategy, with which
an UAV can fly to a goal in an efficient (minimum distance, minimum time) and safe
(avoiding obstacles) way with its navigation capabilities. The output of such a planner
will define a flight path along with the navigation and guidance modes to be used on
each segment of the path.

2 Scientific context and related works

As stated above, most outdoor UAVs have an automatic navigation capability based on
the GPS/INS localization and waypoint navigation. However, this kind of navigation
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depends on the quality of the perceived GPS signal. It is known that the GPS signal can
be masked or degraded due to occlusion in cluttered environments. [Kleijer et al., 2009]
proposes a method to predict the availability of the GPS signal from an environment
model. It is known that the INS-only navigation solution diverges very quickly due
to accumulation of inertial measurement bias. Consequently, UAV will lose its auto-
matic flight capability in the absence of GPS signal if it does not have any alternative
navigation and guidance system which do not rely on GPS information. Such alter-
native systems based on 2D or 3D vision sensors have been studied by researches,
especially for UAV indoor operation where no GPS signal is available. For example,
a variety of visual odometry and SLAM techniques have been proposed to estimate
UAV state by either using purely vision or by fusing vision with INS and/or other
available sensors ([G. Chowdhary and Shein, 2013]−[S. Lynen and Siegwart, 2013] and
many others). Landmark or map-based navigation methods have been also investigated
[Karpenko et al., 2015]. Besides, visual servoing approaches can be applied to UAV guid-
ance and control relative to its environment without using UAV absolute state. For exam-
ple, UAV terrain following, corridor navigation or landing can be achieved by using opti-
cal flow information directly in flight guidance and control [B. Herisse and Russotto, 2010,
S. Zingg and Siegwart, 2010].

It is important to notice that the applicability of such approaches depends on how the
environment is modeled and perceived. For instance, the landmark-based localization
is operational only when such a landmark is in the field of view of the UAV onboard
camera, or visual SLAM and optical flow techniques require rich texture on the image.

Surprisingly, the decision on which type of navigation and guidance modes one should
use during different phases of the mission in function of the surrounding environment
has not been much studied by the scientific community. On this subject, we have pro-
posed the first approach that explores the use of classical planning algorithms to ob-
tain a flight plan (i.e., a list of waypoints) and the navigation and guidance modes
associated to each path segment between two consecutive waypoints of the flight plan
[Watanabe et al., 2016].

Nevertheless, this approach has some limitations. For instance, in the work of
[Watanabe et al., 2016], the path execution uncertainty is propagated along the path
according to a model associated with each combination of the navigation and guidance
modes. Then it is used for the traversability check and the cost calculation, but not
really treated as uncertainty in node transitions (i.e. UAV displacement). That is, with
such path execution uncertainty, the node transition should include more than one possi-
bilities with corresponding probabilities for an applied guidance law. Hence, the planner
needs to deal with this “uncertain” node transition associated with the path execution
uncertainty. Moreover, the approach proposed in [Watanabe et al., 2016] does not con-
sider any “observation” process. During a mission execution, the UAV onboard system
is capable to detect a current availability of each navigation and guidance mode (e.g.
GPS signal reception, landmark detection, etc.). Therefore, this approach must adapt
the model and replan a strategy online in function of this observation result.

Planning approaches that consider uncertainties have treated different problems:
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scheduling waypoints under the travel execution time uncertainty [Evers et al., 2014],
planning strategies to identify targets [Chanel et al., 2013], treating the uncertainty on
the formal underling framework[Bertuccelli et al., 2012] or over the different possible
measurements available during the path execution [Van Den Berg et al., 2011]. During
the mission execution, it is necessary to evaluate (observe) the current situation regard-
ing the mission phase, the services and resources available onboard the UAV in order
to switch over (act) to a different state. However, the observation is not necessarily
perfect or deterministic. For example, it is possible to obtain a map of the probabilities
of the GPS availability for a given environment [Kleijer et al., 2009], but the effective
availability is only known once there [Van Den Berg et al., 2011]. Another thing is that
it is possible to model a state transition between two estimated execution states for
each navigation and guidance modes. These estimated execution states, or belief states,
are often described by a Gaussian function [Van Den Berg et al., 2011, Bai et al., 2014,
Delamer et al., 2017b] with the uncertainty.

Formal models from optimal control theory can be applied to the sequential deci-
sion making problem under uncertainties. Partially Observable Markov Decision Pro-
cess (POMDP) [Smallwood and Sondik, 1973, Kaelbling et al., 1998] proposes an ele-
gant framework to handle decisional problems where the resulting state transition after
a selected action is uncertain, and where the observations of discrete states are partial or
imprecise. It should be noted that, in this problem of navigation and guidance strategy
planning, the state estimation (localization) and path execution (guidance) results (=
belief state) are defined over a continuous space. Some researchers have worked in enrich-
ing the POMDP framework to handle with continuous state space [Brooks et al., 2006],
and have proposing algorithmic approaches [Brooks et al., 2006, Brechtel et al., 2013] to
solve such models.

The first difficulty in applying the POMDP to continuous state space for such a
navigation and guidance planning problem is the definition of the transition and ob-
servation functions over states [Delamer et al., 2017b]. In this particular problem, the
transition function depends on the current belief state (not the state) as well as on a
selected action, which includes the UAV displacement and the choice of its navigation
and guidance modes [Delamer et al., 2017a]. No additional information concerning the
system state, even an imprecise and/or partial one, is available [Delamer et al., 2019].
The only information that can be exploited to define an observation function is the one
concerning the availability of each navigation and guidance mode . For example, the
actual GPS signal availability at each location is not known a priori, but only a prob-
ability of such an availability can be modeled in certain conditions. In this sense, the
semantics of observations in the POMDP context changes, because knowing the cur-
rent availability of the navigation and guidance modes at a given instant does not give
additional/directly information (correction) on the state estimation uncertainty. A cur-
rent PhD candidate have proposed approaches and algorithms to solve such a problem
[Delamer et al., 2018, Delamer et al., 2019], see Figure 1. His approach: (i) exploits a
factorization of states variables in fully and non observable states variables while con-
sidering states transition functions that includes the path execution error generated by
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Figure 1: Example of results for a 100m × 100m benchmark problem. Different paths
are obtained given different GPS availabilty probability maps.

the navigation solution being uses; and (ii) it proposes a promising solving algorithm
for Mixed-Observability Stochastic Shortest Path (MO-SSP) problems (POMDP goal
oriented problems). But much more research is need to increase the efficience of these
proposals, in particular concerning evolutions on the modelling to decrease computation
time needed for planning.

The second difficulty is to make the planner run onboard in real-time to adapt the
model and replan when necessary, for instance when considering a new goal state, or
upon new perception of the environment, or when the UAV state estimation during its
flight does not match anymore with the model. Considering only when the model and
the goal do not change, and for a finite-dimension discrete state, action and observation
spaces, it is possible to compute a policy for every possible reachable belief state before
the mission. However, it is not so easy when having a continuous state space and a
dynamic environment.

To our knowledge, there is no current approach able to solve a continuous state
space POMDP online considering a new goal or new perception of the environment.
This can be explained by the exponential complexity of such a model, which may be
prohibitive for an embedded computation. Since some years, we have proposed AMPLE
- Anytime Meta Planner, a generic framework, to solve planning problems online during
the mission execution, and it has been applied to solve a discrete POMDP problems
[Chanel et al., 2013, Chanel et al., 2014, Chanel et al., 2019]. However, this framework
can be extended so far being able to handle with such a navigation and guidance strategy
online planning and execution.
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2.1 Thesis Objective

This project aims to study Mixed-Observability Stochastic Shortest Path (MO-SSP)
models to address the planning problem of the navigation and the guidance strategy for
an autonomous UAVs that evolve in cluttered environments. In particular to handle with
the possible evolutions of the environment, including mission goals, during the execution
which could engender a need of a continuous and online re-planning process.

3 Innovation

The problem treated in this project is located in the frontier at two different research
areas: the automated planning domain and the GNC (guidance, navigation and control)
domain. In a robotic architecture, these areas are often perceived in an hierarchical order
where a mission planner sends commands to GNC components without caring how these
commands will be executed. The originality of this project lies in the aspect of propos-
ing a framework where the performances and choices of the lower-level GNC systems are
taken into account in the upper-level mission planning. This project is expected to pro-
vide with methodological solutions to advance the interaction between mission planning
(upper-level) and acting modules (lower-level) in an embedded deliberative architecture
in order to obtain a safe mission execution policy.
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