The internship will investigate the contact line velocity impact is not accounted for. During the present internship the impact of the micro-region over the cavitation of a bubble having a large contact velocity impact will be investigated.

Goals of the internship

The goal of the present internship is the investigation of the impact of the contact line velocity over the micro-region. The application will be the study of a single bubble growth at the wall induced by cavitation under zero gravity conditions. The coupling of a micro-region model with direct numerical simulation solver for incompressible two-phase flows with phase change has been recently carried out applied to the study of nucleate boiling in micro-gravity conditions (in isobaric conditions) [5]. The micro-region model has been recently implemented in a compressible numerical solver for multi-phase flows which is based on a pressure-based equation for the energy and Level Set/Ghost Fluid approach to handle the interfaces [3,4]. Cubic equation of state (EOS) are used for the liquid and vapour phases and for saturation conditions at the interface. A phase change model, based on fundamental principles and jump conditions, allows to simulate the phase change induced by pressure and temperature variations of single species fluids. Presently the micro-region model only includes thermal effect and the contact line velocity impact is not accounted for. During the present internship the impact of the micro-region over the cavitation of a bubble having a large contact velocity will be investigated.

Work plan

- State of the art: micro-region model, numerical simulation of two-phase flows with phase change, hydrodynamic and pool cavitation
- Development: micro-region model development in order to include state of the art models for the contact line velocity
- Simulation: single bubble cavitation under zero gravity conditions

Team

The internship will take place at the SaCLab (Space Advanced Concept Laboratory) in the DCAS department at ISAE SUPAERO and will be co-supervised by IMFT (Prof. S. Tanguy).
References

Profile: Master 2 student, basics in computational fluid dynamics, basics in two phase flows, programming.

How to apply: email to annafederica.urbano@isae-supero.fr and sebastien.tanguy@imft.fr

Perspectives: possibility to apply for a PhD position after the internship.