

Soutenance de thèse

Thomas ALARY soutiendra sa thèse de doctorat, préparée au sein de l'équipe d'accueil doctoral ISAE-ONERA EDyF et intitulée «*Etude de l'impact de gouttes surfondues sur une paroi*»

Le 12 février 2024 à 14h00, Auditorium ONERA Toulouse

devant le jury composé de

M. Pierre TRONTIN	Université Claude Bernard Lyon 1	Directeur de thèse
M. Guillaume CASTANET	CNRS	Rapporteur
M. Baptiste DÉJEAN	ONERA	
M. Dominique LEGENDRE	Institut National Polytechnique Toulouse	
M. Hugo PERVIER	Cranfield University	
M. Thomas SÉON	CNRS	Rapporteur

Résumé : La sécurité des vols est un prérequis en aéronautique et le givrage est une des principales sources d'incidents. L'accrétion de givre, créée lors de la collision de gouttes d'eau surfondues présentes dans les nuages, peut détériorer les performances aérodynamiques de l'aéronef, obstruer des capteurs ou endommager les moteurs. Il est donc essentiel de comprendre le phénomène d'impact de gouttes d'eau en conditions givrantes pour pouvoir prédire la quantité de glace qui peut se former et assurer un dimensionnement suffisant des systèmes de protection contre le givre. Ce phénomène a largement été étudié dans la littérature mais seulement pour de faibles vitesses d'impact de goutte. La nouvelle soufflerie givrante de l'ONERA a permis d'accéder à des régimes d'impact de gouttes plus en accord avec la réalité rencontrée par les aéronefs. Cette thèse se concentre sur l'impact de goutte d'eau sur une paroi pour des nombres de Weber et de Reynolds qui varient respectivement de 15 000 à 170 000 et de 11 000 à 45 000. L'étude de l'impact des gouttes d'eau a été réalisée grâce à un système de détection et de visualisation puis avec un Phase Doppler Analyser pour caractériser les gouttes secondaires créées lors de l'impact. L'impact sur une surface sèche et horizontale a été étudié mais d'autres paramètres tels que l'angle d'impact, l'état de surface, la pression du gaz, la température ont été étudiés pour quantifier leurs influences sur le splashing. Il a été montré que pour les gammes de nombres de Reynolds et de Weber investiguées, le résultat du splashing dépend des propriétés de la surface mais également des propriétés de l'air. Une faible pression d'air ou la présence de givre sur la paroi favorise la formation d'une couronne de fluide qui se décolle après l'impact. La campagne de mesure avec le PDA a permis de montrer que les gouttes secondaires générées lors d'un corona splash sont plus grosses que lors d'un prompt splash. Le modèle d'impact de Riboux et Gordillo, qui attribue le splashing à une force aérodynamique s'exerçant sur le fluide qui s'étale lors de l'impact, permet de bien décrire le splashing. Une seconde campagne de mesures se concentrant sur les formes de glace obtenues lors de l'impact de SLD a permis de valider les nouvelles constantes du modèle de taux de dépôt de Trontin et Villedieu déterminer grâce à de nouvelles données de la littérature.

Mots-clés: goutte, impact, surfondues

Summary: Icing is an important issue in civil and military aeronautics. Reglementation has changed to take into account the resence of large supercooled droplets. The goal of this thesis is to study

experimentally the impact of these droplets in conditions close to the flight condition in order to find correlation in function of the impact parameters. The first phase will be dedicated to bibliography and the way to characterized the impact of droplets on the test bench. The second phase will be dedicated to set up the experimental study. Mesures will be realized in a third phase. Then a physical study of the results will be realized to find empirical laws. This laws will be test and integrate into icing code of ONERA, ONICED2D and ONICED3D.

Keywords: supercooled, droplet, impact

